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This note describes how to estimate the parameterization of the critical current as 
a function of the magnetic field, temperature and strain for Nb3Sn strands. State of the art 
parameterization models are presented and applied, using a weighted least square fit, to 
critical current measurements performed at the Short Sample Test Facility. 
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1) Field Dependence 
 
 The Bean Critical State Model assumes that the current flows in the 
superconductor always at the conductor’s critical current value. If there is a magnetic 
field present, a Lorentz force will act on the vortexes: 
 

( ) )(BFBBJ pc =×
rr

   1) 

 
where Fp is the maximum pinning force, Jc is the critical current density and B is the total 
magnetic field. There is a variety of pinning models [1,2] however most of them derive 
the same relationship for the pinning force as the function of the magnetic field: 
 

( )qp
p bbCBF −⋅⋅= 1)(   2) 

 
where b=B/BC2 , C is a scaling constant and p and q are two parameters depending on the 
material. For Nb3Sn p≈0.5 and q≈2. Eq. 2 has been experimentally confirmed by 
magnetic measurement down to 1T [3].  

Equations 1 and 2 describe the scaling law for the critical current as a function of the 
magnetic field. 
 
 
2) Temperature and strain dependence 
 

To introduce in eq.2 the temperature and strain dependence, the scaling constant C 
and BC2 should be expressed as a function of the temperature and strain. C is directly 
proportional to BC2(T,ε) and inversely proportional to the Ginzburg-Landau parameter 
k(T,ε) [5]. However, to fit the experimental results with the scaling law described in the 
previous paragraph an additional term A(ε), which is a function of strain only, has to be 
introduced into C [5]: 
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The maximum pinning force can be then parameterized as: 
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Eq. 3 can be written using only single variable functions.  
The Ginzburg-Landau relation for the upper critical field is: 
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Using the two fluid model for the temperature dependence [5]: 
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where:   ( )εCT
Tt =  

 
From a linear approximation of the generalized BCS relations [5] one obtains: 
 

( )εε cc TB ∝),0(     6) 
 
Substituting eq. 5 and 6 in eq. 4 : 
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Substituting eq. 7 in eq.3 one finally obtains: 
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where ( ) ( )εεα A∝ . 
For low-temperature A15 conductors, the upper critical field data can be parameterized 
using the empirical equation [5]: 
 

( )( )νεε tBTB cc −= 1,0),( 22      9) 
 
Equations 8 and 9 are obtained via a parameterization of the maximum pinning force 
using only single variable functions. In this parameterization formula the effects of the 
magnetic field, temperature and strain are decoupled from each other. 
After applying this scaling law to experimental data the authors proposed eliminating m 
as a free parameter by setting m=2 [5] and parameterizing the data using: 
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This parameterization differs from that proposed by Summer et al by a factor Tc

2(ε). 
 Eq. 10 was compared to comprehensive experimental Jc(B,T,ε) data for a 
Modified Jelly Roll Nb3Sn sample and the results of the fits were excellent [5]. The fit 
values of the free parameters for this case were: 
 
n≈2.5  p=1/2  q=2  ν=1.374 
 
Substituting these values in eq.10 and dividing by B the scaling law for the critical 
current density becomes:  
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and finally considering ( ) 1
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, one obtains: 
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3) Parameterization for critical current measurement performed at  Short Sample 
Test Facility 

 
 In a typical Sort Sample Test Facility (SSTF) measurement we can assume that 
the temperature and strain are constant (the effect due to Lorentz forces can be 
neglected). Thus from eq.1 and 2 the following scaling law for a Nb3Sn strand 
perpendicular to the magnetic field can be derived: 
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Where : 
 
Ano_cu  area of the superconductor contained in the composite strand   
 

p
Ccuno BCAC −⋅⋅=′ 2_  

 
Assuming for Nb3Sn the coefficients p and q are equal to 0.5 and 2. (4,5): 
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In this case then, the scaling law for the critical current is a function of the magnetic field 
with two parameters: a scaling factor and Bc2. In order to get these parameters from our 
measured data a weighted least-square fit has to be applied. The weights are the inverse 
of the variance of the data measurements. 

Fig. 1 shows the result of this procedure for a 1mm Modified Jelly Roll 
superconducting strand measured at the SSTF. The errors bars [7] on the measured data 
have been calculated with a 95% (1.96σ) confidence level. For the prediction bounds as 
well, the confidence level is 95%. As it can be seen from the plot that the goodness of  fit 
is excellent, 0.99927. 

 
 

Fig. 1 Field dependence of the critical current for a 1mm MJR strand 
 
 
4) Self field correction 

 
In order to obtain the correct result, the measured IC(B) data must be corrected for self 

field effects. Since the self field and the current density are changing within the strand it 
is not obvious what field value should be taken to characterize a strand at a given Ic 
value. Ic itself is obtained by integrating different critical current densities along the cross 
section of the strand. Although naturally one would pick the average field value of the 
strand it has been shown [6] that the relevant field value to apply, which works for the 
parameterization described in the previous paragraph, is the peak field value. 

772 A @ 12 T 
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At the SSTF the background field Bbg is constant and oriented along the axis of the 
solenoid sample. That means the peak field will be on the internal or external surface of 
the coil. 

Using a straight strand self field approximation the peak field at the strand surface is 
equal to:  
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For a 1mm MJR strand the diameter of the superconductor is 0.8 mm: 
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According to a two dimensional finite element analysis (performed by Vadim K.) 

the peak self field for a current of 1000A is anti-parallel to the background field and 
equal to 0.648T while the peak field in the parallel direction is 0.413T. That means that 
the peak field in our coil is: 

 
)10648.0,10413.0max( 33

bgbgp BIIBB −⋅⋅⋅⋅+= −−    13) 
 
Fig. 2 shows a comparison between parameterizations with and without the self 

field correction for the same data presented in fig.1. 
Introducing the self field correction the goodness of fit is slightly improved; in 

fact, the sum of the residuals squared was reduced from 61.31 to 38.07. The most 
important conclusion that can be drawn is that the critical current parameterization 
without self field corrections leads to completely wrong results at low magnetic field 
values.  

The decrease in critical current for background field values lower than 0.7 T is 
due to the decrease of the peak field (eq. 13). 

 
bgp BIB −⋅⋅= −310648.0  
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Fig. 2 Field dependence of the critical current for a 1mm MJR strand with and without self-field correction 
 
5) Ic at 2.2K estimate using 4.2K data 
 
 Making the assumption that the strand strain does not change significantly by 
cooling down the sample from 4.2 to 2.2 K, εε = . From eq.9 and 11: 
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 In order to estimate the critical current at 2.2K the parameters that should be 
calculated are C’’, ( )ε,02cB  and ( )εcT . Comparing eq. 14 with eq. 12 one can write: 
 



 8

( )

22
2.41'''

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

εcT
CC     16) 

 
The parameters C’ and ( )ε,2.42cB  are estimated from the measurement at 4.2K and from 
the fit presented in the paragraph 3. 
The critical temperature can be expressed as a function of ( )ε,2.42cB  using the following 
relation [8]: 
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From eq. 9 and knowing that for this kind of strands ( ) TBc 1.280,02 =  and 
( ) KTc 55.180 = [5], )0,2.4(2cB  can be calculated: 
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Once the critical temperature is calculated then, using eq. 15 we can finally 
estimate ( )ε,02cB : 
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As an example the above equations have been applied to the same set of data presented in 
fig.1. From the fit of the experimental data: 
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Appling eq.17 the critical temperature can be estimated: 
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From eq.16 and 18: 
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Since ( )ε,02cB =25.45T is significantly less than Bc20=28.1T one can conclude that the 
superconductor was under a strain during the measurement. The strain is due to different 
thermal expansion coefficients of the sample holder barrel (Ti alloy) and the 
superconductor (Nb3Sn) in the strand. 
 
Using eq.15 we can also calculate the critical field at 2.2K: 
 

TBc 02.24
9.17

2.2145.25),2.2(
374.1

2 =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=ε  

 
The critical current as a function of the peak magnetic field in the strand is then: 
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Fig. 3 shows the result of this calculation: the critical current is plotted as function of the 
background field. 
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Fig. 3 Field dependence of the critical current for a 1mm MJR strand with self-field correction 
 
 
 
6) Conclusions 
 
 In this note a state of the art parameterization model for the critical current of 
Nb3Sn strands as a function of the magnetic field, temperature and strain has been 
described.  
 It was shown how to apply this model in order to fit the data measured at the 
SSTF and to have an estimate of Ic at low magnetic field where measured data are not 
available. 
 The effect of the self field on Ic was analyzed and it was demonstrated that it is 
indispensable to take in account the self field correction in order to estimate the critical 
current at low field values. The magnetic field that has to be introduced in the critical 
current parameterization is the peak field on the superconductor, Bp. An expression for Bp 
has been derived for a 1mm MJR strand measured at the SSTF. 
 In the last paragraph it was presented how to estimate the critical current of a 
strand at 2.2K using the data measured at 4.2K and the parameterization law. 
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Appendix : average self field in a strand 
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